
Adaptive and Efficient Log Parsing as a Cloud Service
Zeyan Li

ByteDance Inc.
Beijing, China

lizeyan.42@bytedance.com

Jie Song
ByteDance Inc.
Seattle, USA

jie.song@bytedance.com

Tieying Zhang∗
ByteDance Inc.
San Jose, USA

tieying.zhang@bytedance.com

Tao Yang
Xiongjun Ou
ByteDance Inc.
Shenzhen, China

yangtao.alan@bytedance.com
ouxiongjun@bytedance.com

Yingjie Ye
ByteDance Inc.
Xi’an, China

yeyingjie.bluarry@bytedance.com

Pengfei Duan
Muchen Lin
ByteDance Inc.
Chengdu, China

duanpengfei.1010@bytedance.com
linmuchen@bytedance.com

Jianjun Chen
ByteDance Inc.
San Jose, USA

jianjun.chen@bytedance.com

Abstract
Logs are a critical data source for cloud systems, enabling advanced
features like monitoring, alerting, and root cause analysis. However,
themassive scale and diverse formats of unstructured logs pose chal-
lenges for adaptable, efficient, and accurate parsing methods. This
paper introduces ByteBrain-LogParser , an innovative log parsing
framework designed specifically for cloud environments. ByteBrain-
LogParser employs a hierarchical clustering algorithm to allow real-
time precision adjustments, coupled with optimizations such as
positional similarity distance, deduplication, and hash encoding to
enhance performance. Experiments on large-scale datasets show
that it processes 229,000 logs per second on average, achieving an
840% speedup over the fastest baseline while maintaining accuracy
comparable to state-of-the-art methods. Real-world evaluations
further validate its efficiency and adaptability, demonstrating its
potential as a robust cloud-based log parsing solution.

CCS Concepts
• Information systems→ Data mining.

Keywords
Log parsing, Hierarchical clustering, Cloud service

ACM Reference Format:
Zeyan Li, Jie Song, Tieying Zhang, Tao Yang, Xiongjun Ou, Yingjie Ye,
Pengfei Duan, Muchen Lin, and Jianjun Chen. 2025. Adaptive and Efficient
Log Parsing as a Cloud Service . In Companion of the 2025 International
Conference on Management of Data (SIGMOD-Companion ’25), June 22–27,

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3724427

print(f"release:lock={lock}, flg={flag}, tag={tag}, name={name}, ws={ws}")
print(f"acquire:lock={lock}, flg={flag}, tag={tag}, name={name}, ws={ws}")

release:lock=2337, flg=0x0, tag="View Lock", name=systemui, ws=null
release:lock=187, flg=0x0, tag="*launch*", name=android, ws=WS{10113}
release:lock=62, flg=0x0, tag="WindowManager", name=android, ws=WS{1013}
acquire lock=23, flg=0x1, tag="View Lock", name=systemui, ws=null
acquire lock=1661, flg=0x1, tag="RILJ_ACK_WL", name=phone, ws=null

Template 1: release lock * flg * tag * name * ws *
Template 2: acquire lock * flg * tag * name * ws *

Log statements

Log parsing

Figure 1: An example of log parsing

2025, Berlin, Germany. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3722212.3724427

1 Introduction
System logs provide a rich source of information about the behavior
and performance of distributed systems, capturing runtime events,
execution flows, and operational states. These logs play a pivotal
role in automated analysis tasks, including anomaly detection, fault
diagnosis, and performance monitoring [6, 17, 21, 32, 35]. However,
the unstructured nature and diverse formats of logs, combined with
the vast scale of modern cloud systems, make extracting actionable
insights challenging [7, 30, 34]. Therefore, most automated log
analysis relies on log parsing to automatically extract structured
log templates and variables from unstructured log records to address
these challenges. Fig. 1 illustrates how parsing transforms code-
generated raw log records into structured templates.

Cloud services like AWS CloudWatch and AzureMonitor provide
tenants with foundational log management capabilities, including
ingestion, indexing, querying, and basic analytical features. These
platforms process millions of logs per second from diverse applica-
tion components, aggregating them into massive, heterogeneous
streams containing thousands of distinct log templates. The com-
plexity stems from the diverse nature of modern cloud applications,
where each component may generate numerous types of logs for
different scenarios and states. While these platforms provide rule-
based grouping, visualization, and alerting, they rely on manual
configurations for log parsing, which becomes impractical as tem-
plate numbers grow. Recognizing this gap, Volcano Engine, the cloud
computing services from ByteDance, extends these capabilities by

1

https://doi.org/10.1145/3722212.3724427
https://doi.org/10.1145/3722212.3724427
https://doi.org/10.1145/3722212.3724427

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

introducing automated, out-of-the-box log parsing, which trans-
forms raw logs into structured formats and enables users to query
logs more intuitively. Based on these parsing results, we further pro-
vide multiple advanced analytics capabilities, including log anomaly
detection (identifying abnormal changes in template quantities and
newly emerged templates), template distribution comparison across
different time periods, and automatic matching against a library of
known failure scenarios. These out-of-the-box features allow users
to quickly identify system issues, understand behavioral changes,
and diagnose problems.

Delivering log parsing as a cloud service in large scale is fraught
with challenges. These include:

(1) Adaptability: Applications require varying levels of parsing pre-
cision, even for logs within the same stream, necessitating a
system that adjusts dynamically to user needs. For example, logs
generated by print(register callback for {}.format(email)) need be
parsed as both register callback for * and register callback for None
during debugging to discover unexpected null, while merging
these into one template can be better in other scenarios. This
diversity demands real-time adjustable parsing mechanisms.

(2) Compute Efficiency: The massive scale of cloud logs necessitates
efficient algorithms for both offline training and online match-
ing. Delays in log parsing can impede query response time and
increase compute resource costs.

(3) Storage Efficiency: Log parsing adds additional storage costs for
cloud tenants. To keep the service cost-effective, resource usage
must be minimized without compromising performance.

(4) Parsing Accuracy: handling diverse and unpredictable log pat-
terns with high precision, even in the absence of prior knowledge.

Existing techniques inadequately address these challenges. Heuris-
tic rule-based methods [10, 12, 16] struggle to adapt to diverse log
patterns. Frequent pattern mining methods [11, 25, 29] are sensitive
to parameter tuning and preprocessing, which limits their robust-
ness. Existing log clustering methods [22, 30] can fail to generate
accurate templates and incur significant overhead. Deep learning
approaches [13, 28] achieve high accuracy but require substantial
labeled data and compute resources. LLM-based methods [14] offer
flexibility and adaptability but suffer from high inference costs and
latency. Additionally, most existing works struggle to compute log
parsing results at varying precision levels in real-time.

To tackle the challenges of log parsing as a cloud service, we
introduce ByteBrain-LogParser (referred to as ByteBrain), a compre-
hensive framework tailored for cloud service environments. Byte-
Brain is designed to balance adaptability and efficiency, addressing
the diverse requirements of cloud tenants. The framework operates
in two phases. In the offline training phase, logs are periodically
collected and hierarchically clustered into a tree structure, where
each node represents a log template. Deeper nodes correspond to
more precise templates, enabling granular control over parsing
precision. This phase leverages innovative techniques such as posi-
tional similarity distance and saturation scoring, which optimize
the clustering process to achieve a balance between computational
efficiency and parsing precision.

In the online matching phase, ByteBrain processes incoming logs
in real time by matching them against pre-trained templates. The
system allows users to adjust parsing precision dynamically, based

10
3

10
4

10
5

Throughput

0.2

0.4

0.6

0.8

G
ro

up
 A

cc
ur

ac
y

SHISO

LILAC

Spell
UniParser

SLCT

LogMine

MoLFI

IPLoM

Logram

Drain

LogSig

LogPPT LFA LogCluster

ByteBrain

LenMa

AEL

Better

Figure 2: Our method meets the goal of high throughput and
near-SOTA accuracy

on their operational needs, by specifying thresholds at query time.
This capability enables seamless transition between coarse-grained
and fine-grained parsing without requiring the reprocessing of
logs. By efficiently managing the interplay between accuracy and
resource utilization, ByteBrain ensures cost-effective operation for
high-throughput environments.

Several key techniques enhance ByteBrain’s efficiency. Positional
similarity distance quantifies log structural similarity through key
variable positions, improving clustering accuracy. Hash encoding
enables efficient storage and fast online parsing. Variable saturation
metrics guide hierarchical clustering to optimize template gener-
ation and avoid redundant refinements. These techniques collec-
tively enable ByteBrain to process diverse, large-scale log streams
efficiently.

We evaluate ByteBrain on the widely-used LogHub and LogHub-
2.0 datasets (see Section 5.1.1). It achieves an average accuracy
of 0.98 and 0.90 on LogHub and LogHub-2.0 respectively, closely
matching the SOTA (state-of-the-art) method accuracy of 0.99 and
0.93. Its key strength lies in throughput, processing 229,000 logs
per second, which is 840.68% faster than the fastest baseline and
outperforms others by 1-3 orders of magnitude. As shown in Fig. 2,
this combination of near-SOTA accuracy and excellent efficiency
positions ByteBrain as a highly competitive solution for log parsing
as a cloud service. Additionaly, our ablation study (Section 5.4)
validates each proposed technique. Industrial evaluations (Section 6)
demonstrate its practical advantages in production. ByteBrain has
been deployed in production on Volcano Engine’s Torch Log Service
(TLS), with real-world evaluations confirming its performance and
reliability in cloud computing environments.

In summary, the key contributions of this paper are as follows:

(1) An adaptive and efficient log parsing framework for cloud
environments: Our system supports real-time, large-scale log
parsing and allows users to adaptively adjust parsing precision
to meet various operational requirements with low compute
and storage overhead.

(2) An efficient hierarchical clustering-based log parsing algo-
rithm:We introduce positional similarity distance, and variable
saturation to enhance log template extraction while minimiz-
ing computational overhead and storage costs.

(3) Comprehensive evaluation on large-scale real-world datasets:
Extensive experiments demonstrate the near-SOTA accuracy
and unprecedented efficiency of our method.

2

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Periodical
training

Online
matching

§4.1
Preprocessing

+
§4.2
Initial

Grouping

Log
stream

Internal topic

Template
ID

Recent
logs

New
arriving

log

§4.3 Hierarchical
Clustering

Model

Model

§4.8 Online
Matching

Log
topic

Append new log

query

Logs &
templates

User

User

Offline

Online

Figure 3: System design of ByteBrain-LogParser

2 Related Work
Log parsing remains critical for system management and analy-
sis. Existing techniques are broadly categorized as syntax-based
or semantic-based approaches. Each category offers distinct trade-
offs in cloud environments where real-time processing, efficiency,
and adaptability are paramount. Traditional industrial systems
(LogStash [3], Splunk [4], CloudWatch [1], DataDog [2]) that rely on
user-defined patterns fall outside our focus on automated parsing
methods.

Syntax-based log parsers have been widely adopted in log pars-
ing due to their simplicity and compute efficiency. These parsers
primarily rely on predefined rules, heuristics, or patterns to extract
structured templates from unstructured log data. Classic parsers
such as SLCT [16], Logram [9], and Drain [12] employ various
heuristic rules to parse log messages. For instance, Drain constructs
a fixed-depth parse tree for message classification, while Logram
leverages n-gram dictionaries for variable token identification. An-
other category of syntax-based methods utilizes frequent pattern
mining or clustering techniques to identify recurring log structures.
These methods exhibit several limitations: frequent pattern mining-
based approaches struggle to identify low-frequency log patterns,
while clustering-based methods often suffer from high computa-
tional overhead, parameter sensitivity, and suboptimal accuracy. For
example, LogMine’s [11] iterative clustering and merging process
incurs substantial computational costs, while LogSig [27] requires
precise specification of log category numbers. LogCluster’s [19]
word-frequency based clustering approach fails to differentiate be-
tween semantically distinct messages that share common word
distributions. Notably, although SPINE [30] employs hierarchical
clustering to automatically determine the number of clusters and
emphasizes scalability, its log encoding and clustering algorithms
impede template generation, limiting its viability as a cloud service.

Semantic-based log parsers have recently emerged, leveraging
machine learning and deep learning models to capture deeper de-
pendencies and semantic relationships within log data. Approaches
like UniParser [21], LogPPT [18] and LogStamp [28] represent this
category, utilizing custom deep learning models or pretrained lan-
guage models such as RoBERTa [20] to learn semantic patterns from
logs. These methods often provide higher parsing accuracy, particu-
larly for complex and unstructured logs, as they do not rely on rigid
token-based rules. However, semantic-based methods typically de-
mand significant labeled data and compute resources, making them
impractical for large-scale or real-time applications. Additionally,
their inference costs can result in latency issues, limiting their cost
efficiency in cloud environments.

The rise of Large Language Models (LLMs) offers a promising
new direction for log parsing. LLMs, pre-trained on vast amounts

of text data, have demonstrated the ability to understand complex
language patterns, making them suitable for parsing log messages
without the need for manually crafted rules or extensive labeled
data. Early work, such as DivLog [31] and LILAC [14], explores the
use of LLMs for log parsing. LILAC, in particular, introduces an
adaptive parsing cache to mitigate the inefficiency and inconsis-
tency issues commonly associated with LLMs, ensuring both high
parsing accuracy and better compute efficiency. This represents
a significant shift from traditional methods, as it leverages the in-
context learning (ICL) capabilities of LLMs to dynamically adapt
to different log formats without requiring large-scale retraining.
However, these methods still require substantial resources for both
pertraining and inference, making them less feasible for large-scale
log parsing in cloud environments.

3 System Design
ByteBrain is designed as an adaptive log parsing system tailored
for high-throughput cloud environments. The system adopts a two-
phase approach, including offline training and online matching,
to achieve efficiency while maintaining adaptability to diverse log
patterns. Fig. 3 illustrates the system architecture.

Offline Training. A log topic, representing a single log stream,
serves as the fundamental unit of our log service, where records
are indexed, stored, and made available for analysis. Logs within
each topic are processed in two phases. During offline training,
logs are collected, preprocessed, initially grouped and hierarchi-
cally clustered into a tree structure, where each node represents a
log template. This structure enables ByteBrain to dynamically ad-
just parsing precision by traversing the tree based on user-defined
thresholds. The saturation score (see Section 4.5), which strictly
increases with tree depth, quantifies template precision. Each node
stores its metadata including template text, saturation score and
parent-child relationships in an internal topic. This enables effi-
cient navigation across precision levels while reducing reliance on
external databases. Training is triggered upon reaching either a
volume threshold or a time interval after last execution. Templates
are unavailable for logs before first training completes. However,
this limitation is negligible as we configured initial training to finish
within 5 minutes, which is inconsequential compared to the typical
lifecycle (months to years) of log topics. For exceptionally large log
volumes, random sampling prevents out-of-memory (OOM) issues.
The newly trained model is merged with the previous one. Tem-
plates with similarity scores above a given threshold are merged;
otherwise, they remain separate child nodes.

Online Matching. The online phase processes incoming logs
through preprocessing and initial grouping before matching them
against the trained model. To optimize throughput and latency,

3

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

the system distributes matching tasks across multiple processing
queues, leveraging the independent nature of template matching.
Latency matters because template IDs must be computed along
with other traditional text indices before logs can be written to the
append-only log topic storage. For rare log messages that do not
appear in the training data, they may fail to match any node in the
clustering trees during the online matching phase. In such cases,
we treat the log record itself as a temporary template and insert
it into the clustering tree as an individual node. These unmatched
logs are subsequently considered during the next training cycle,
allowing the system to adaptively learn new patterns and update
the clustering tree accordingly.

Query. Users can dynamically control template precision during
queries by specifying a threshold. The system efficiently navigates
the clustering tree, starting from the retrieved template IDs and
traversing upward through ancestor nodes until identifying the
coarsest templates that meet the specified threshold. This approach
enables real-time precision adjustment without log reprocessing
or redundant template storage, offering adaptive log parsing with
minimal computation and storage overhead.

Parallel. The system leverages parallelization across all phases.
During training, preprocessing tasks (tokenization, variable replace-
ment, and hash encoding) and hierarchical clustering operate con-
currently. Moreover, hierarchical clustering can be performed con-
currently for each group obtained from initial grouping. The online
phase parallelizes template matching across all logs. Query pro-
cessing benefits from parallel execution of both precise template
queries and ancestor node traversal. In production, we optimize
resource utilization by limiting parallelization to 1-5 cores, based
on topic scale requirements.

4 Algorithm
In this section, we introduce our log parsing algorithm. It starts
by transforming unstructured logs into numerical vectors via to-
kenization and deduplication, followed by initial grouping based
on lengths and prefixes to allow parallel processing. We then apply
hierarchical clustering to each group, with each iteration gener-
ating nodes in a tree where deeper nodes represent more precise
templates. We use saturation score to evaluate nodes and deter-
mine whether to terminate further clustering. In Section 4.8, we
introduce the online matching algorithm.

4.1 Preprocessing
Preprocessing aims to transform log texts into numerical vectors.
This is an important step as it bridges the gap between textual data
and mathematical algorithms, which thus enables efficient com-
putation. Key preprocessing steps include tokenization, common
variable replacement, deduplication, and hash encoding.

4.1.1 Tokenization. Tokenization refers to the process of dividing
each log record into a sequence of tokens. By default, we use the
following regular expression to segment each log record.

(?:://)|(?:(?:[\s\'\";=()\[\]{}?@&<>:\n\t\r,])|(?:[\.](\s+|$
))|(?:\\[\"\']))+

Listing 1: Python regular expression for tokenization

10
0

10
1

10
2

10
3

10
4

Count w/o replacement

0.0

0.5

1.0

C
D

F

Linux
Thunderbird
Spark

Apache
Real World

10
0

10
2

10
4

10
6

Count w/ replacement

Figure 4: High log duplication with increased redundancy
after variable replacement

This regular expression comprises four key components: ://
identifies URL protocol separators; \s\'\";=()\[\]{}?@&<>:\n\t\r,
captures common delimiters including whitespace, quotes, and
punctuation marks; [\.](\s+|$) targets sentence-ending periods
while preserving those in numerical values; and \\[\"\']matches
escaped quotation marks frequently used in log data.

We chose regular expressions for tokenization because of their
efficiency, simplicity, and customizability. While effective tokeniza-
tion is crucial for successful log parsing, regular expressions can
only segment logs based on common delimiters and cannot account
for semantic context. For example, when processing domain names,
whether to use periods as delimiters depends on the specific analy-
sis objectives. Nevertheless, regular expressions are fast and allow
users to easily define custom tokenization rules for each topic. To
maintain efficiency, we prohibit the use of high-complexity regex
features in user-defined expressions, such as look around, which
increases complexity from 𝑂 (𝑛) to 𝑂 (2𝑛) in worst cases.

4.1.2 Common Variable Replacement. While we focus on auto-
matic log parsing without requiring manual rules, we allow users
to optionally specify regex patterns for obvious variables to op-
timize performance. These user-defined patterns typically target
common, domain-specific variables that appear consistently across
logs. Early replacement of these known variables significantly re-
duces the complexity for subsequent automatic parsing. For each
topic, we provide default patterns for common variables, including
timestamps, IP addresses, MD5 hashes, UUIDs and so on, while
users can add domain-specific rules to further enhance efficiency.

4.1.3 Deduplication. Log data frequently contains a substantial
number of duplicate records, a phenomenon that becomes more
pronounced after replacing common variables. This redundancy
not only increases storage overhead but also introduces inefficien-
cies in processing and analysis. For instance, in Fig. 4, we show the
distribution of unique log counts across the LogHub 2.0 datasets
(see Section 5.1.1). The prevalence of repeated log patterns under-
scores the opportunity for optimization through deduplication. In
this context, deduplication involves identifying and collapsing du-
plicate log entries while maintaining a count of the occurrences of
each unique log statement. This approach significantly improves
compute efficiency by reducing redundant data.

4.1.4 Hash Encoding. For compute efficiency, tokens will be en-
coded into numerical vectors. A typical approach is bag-of-words
encoding [30], which enables Euclidean distance of the encodings
are computed and fed into K-means clustering to build log clusters.
However, this encoding method disregards the order of tokens and

4

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

cannot directly generate template texts from the clusters. Alter-
natively, ordinal encoding, which assigns a unique numerical ID
to each distinct token, has a major drawback: it requires storing a
mapping between every token and its corresponding numerical ID.
Given the potentially large number of distinct tokens in logs, this
results in substantial storage overhead, significantly increasing the
cost of the log parsing service (see Section 5.4.4).

To address these challenges, we propose to use hash encoding,
which leverages a deterministic hash function to map each token
to a 64-bit integer. Using the same hash function for both offline
clustering and online matching, we eliminate the need to store
token-to-ID mappings. Moreover, unlike ordinal encoding, hash en-
coding supports parallel processing of logs, as the hash function can
independently process each token, thereby improving scalability.

The probability of hash collisions (i.e., two distinct tokens be-
ing mapped to the same hash value) is extremely low and can be
considered negligible in practice. The collision probability can be
approximated using the birthday problem formula. For a 64-bit hash
function, the probability 𝑝 of at least one collision after hashing 𝑛
distinct tokens is given by:

𝑝 = 1 −
𝑛−1∏
𝑘=1

(1 − 𝑘

264
) ≈ 1 −

𝑛−1∏
𝑘=1

exp (− 𝑘

264
)︸ ︷︷ ︸

ln (1−𝑥)≈𝑥 when 𝑥 is small

= 1 − exp (
∑𝑛−1
𝑘=1)𝑘
264

= 1 − exp (𝑛 · (𝑛 − 1)
2 · 264

)

(1)

For example, with 10 million distinct tokens, the collision probabil-
ity is only 0.000271%, which is negligible. Considering that fields
like timestamps and UUIDs are directly replaced with wildcards
using regular expressions, the number of distinct tokens processed
during the encoding stage is significantly smaller than the number
of words in the original log text.

4.2 Initial grouping
Initial grouping organizes logs into distinct groups based on simple
rules to ensure that logs unlikely to belong to the same template
are separated early on. This allows for more efficient and parallel
clustering in later stages.

We apply the following initial grouping strategies:
(1) Length: Logs with different token counts are assumed to be-

long to different templates.
(2) Prefix: Logs are grouped by comparing the first 𝑘 tokens (con-

figured by users and 0 by default), separating logs with differ-
ing prefixes into different groups.

4.3 Hierarchical Clustering
Hierarchical clustering is a core component of ByteBrain. Each
initial group serves as the root node of a clustering tree, where the
logs are iteratively partitioned into sub-nodes. At each iteration, the
current node is divided into multiple subnodes based on a clustering
algorithm tailored for log data. The clustering process ensures that
logs within the same subnode exhibit higher structural similarity
(higher saturation as described below) compared to those in the
parent node. The precision of the log templates increases as nodes
are partitioned further down the tree. The tree structure naturally

organizes logs, making it easier to identify relationships between
templates at different levels of precision. Fig. 5 below presents
clustering tree examples.

The termination of the clustering process for a given node de-
pends on the saturation score, which measures how well the logs in
a node have been resolved into either constants or variables. Nodes
with a high saturation score are considered sufficiently refined and
do not need further split. The detailed algorithm for a single cluster-
ing process and the calculation of the saturation score are discussed
in Section 4.4 and Section 4.5, respectively.

4.4 Single Clustering Process
In the single clustering process, our goal is to iteratively group logs
in a manner that ensures the saturation score improves in every
cluster. This process is inspired by K-Means Clustering and incor-
porates several modifications to better accommodate the unique
characteristics of log data.

The process begins by selecting two logs as the initial cluster
centers. Following the principles of K-Means++ [5], the first log is
chosen randomly, while the second is selected as the log farthest
from the first, based on the distance metric described below. Each
of these logs forms the initial core of a cluster, with just one log in
each cluster at the start. Such a strategy prevents similar logs from
being incorrectly assigned to different clusters.

To calculate the distance 𝑑 (𝐿,𝐶) between a log 𝐿 and a cluster
𝐶 , we propose a positional similarity distance metric instead of the
conventional Euclidean distance. This choice is driven by the nature
of our hash encoding scheme, where token values act as identifiers
without meaningful numerical relationships. Instead, our distance
calculation incorporates two key factors:

(1) Token frequency at each position: For each token in the log, we
evaluate its frequency of occurrence at the corresponding posi-
tion across all logs in the cluster. A higher frequency indicates
that the token is more representative of that position in the clus-
ter. We denote the frequency of the token at position 𝑖 in log 𝐿
within cluster 𝐶 as 𝑓𝑖 (𝐿,𝐶).

(2) Position importance: Positions with greater variability are more
likely to contain variables and are assigned lower importance.
We introduce a weight𝑤𝑖 =

1
𝑛𝑖−1 for each position 𝑖 , where 𝑛𝑖

represents the distinct token count at position 𝑖 within cluster 𝐶 .
The positional similarity distance is then defined as:

𝑑 (𝐿,𝐶) =
∑𝑚
𝑖=1𝑤𝑖 · 𝑓𝑖 (𝐿,𝐶)∑𝑚

𝑖=1𝑤𝑖
(2)

After computing the distances between each log and the clusters,
each log is assigned to the cluster with the smallest distance (i.e., the
highest positional similarity). This ensures that logs with similar
structures are grouped together effectively.

After the initial assignment of logs to clusters, we iteratively
refine the clustering results. In each iteration, as clusters contain
new sets of logs, we recalculate the distances between each log and
all clusters, then reassign each log to its nearest cluster. During this
process, we monitor the saturation score of each cluster compared
to its parent node (the set of all logs). If a cluster’s saturation score
shows no improvement, indicating that no additional token posi-
tions have been identified as either constants or variables within

5

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

Set 1:
1: UserService createUser token=abc123 success
2: UserService createUser token=xyz789 success
3: UserService createUser token=def456 success

Set 2:
4: UserService createUser token=abc123 success
5: UserService deleteUser token=xyz789 failed
6: UserService queryUser token=def456 success

{1,2,3}: 1.0

{4,5,6}: 0.4

{4,6}: 0.6 {5}: 1.0

{4}: 1.0 {6}: 1.0

Figure 5: Illustration example of two log sets and the corre-
sponding clustering trees (log IDs: saturation for each node)

this cluster, we introduce a new cluster. The centroid of this new
cluster is initialized using the log that exhibits maximum distance
from all existing cluster centroids. This strategic expansion of clus-
ters is naturally bounded by the finite number of token positions in
the logs. Once all possible token positions are classified (reaching a
saturation score of 1), further splitting would not yield meaningful
improvements. This approach ensures both adaptability to complex
log patterns and compute efficiency by avoiding the creation of
unnecessary hierarchical levels.

4.5 Calculation of Saturation
Saturation is used to evaluate how well the positions in a group of
logs have been resolved into constants or variables, and controls the
termination of hierarchical clustering. Unlike existing works [30],
our saturation calculation considers both confirmed constants and
likely variables. It permits faster clustering termination while avoid-
ing unnecessary splits, which improves efficiency and accuracy.

If all logs in a group share the same token at a specific position,
that position is definitively considered a constant. For example, in
Set 1 of Fig. 5, all positions except the token value are identical
across logs, meaning these positions are constants. Meanwhile,
the high variability of the token position strongly suggests that
it is a variable, as further splitting based on token values would
not generate meaningful templates. However, for Set 2, though the
token position still has different values in every log, there exists
value variability across other positions (e.g., the action and status
fields). This broader variability indicates that the token might not
always be a standalone variable but could be structurally correlated
with other fields. In such cases, maintaining separate template for
each log preserves important structural patterns.

Therefore, to compute the saturation score, we account for both
constant and variable positions in three steps.

(1) Proportion of constants Let𝑚 be the total number of positions in
the logs, and𝑚𝑐 the number of positions where all tokens are
identical across logs. The proportion of constants is computed
as 𝑓𝑐 =

𝑚𝑐

𝑚 , representing how many positions are fully resolved.
(2) Variability of unresolved positions For each unresolved position,

let 𝑛 be the total number of logs and 𝑛𝑢 the number of distinct
tokens at that position. The scale factor for variability at po-
sition 𝑖 is 𝑓

(𝑖)
𝑣 =

log(𝑛𝑢)−1
log𝑛 , which grows with the number of

distinct tokens. The minimum scale value across all unresolved
positions is selected as the overall variability factor 𝑓𝑣 , ensuring
that positions with the highest variability dominate.

(3) Confidence adjustment To account for the influence of unresolved
positions, we introduce a confidence factor 𝑝𝑐 = 1

2𝑚−𝑚𝑐 −1 , which

decreases as fewer positions are resolved. This factor ensures
that unresolved positions contribute less to the final score when
many constants are already identified.
Finally, the saturation score 𝑠 (𝐶) is computed as:

𝑠 (𝐶) = (𝑓𝑣 · 𝑝𝑐 + (1 − 𝑝𝑐)) · 𝑓𝑐 (3)

This formula balances the proportion of constants with variability
in unresolved positions, giving higher scores to groups that are
well-resolved while penalizing groups with high variability.

Based on the saturation definition above, in Fig. 5, for Set 1, the
saturation of all three logs is already 1 and thus, we avoid further
meaningless splits. In Set 2, we gradually separate the three logs into
different clusters, where the saturation of each new node increases
compared to its parent until reaching 1 at the leaf nodes. Compared
to prior methods, our approach provides finer control over the clus-
tering process by dynamically considering both resolved constants
and unresolved variability. This refinement leads to more accurate
and meaningful log templates and enhances efficiency by avoiding
meaningless splits.

4.6 Balanced grouping
When calculating the distance between a log andmultiple clusters, it
is common for the log to have the same distance to multiple clusters.
In such cases, to ensure even cluster distribution, we randomly
assign the log to one of these clusters with equal probability, rather
than deterministically assigning it to the first cluster.

Balancing the distribution of logs across clusters helps minimize
the depth of the resulting clustering tree. When users specify a
saturation threshold at query time, the system identifies the coarsest
template that satisfies the threshold by traversing the ancestor
nodes of the most precise template (pre-computed during online
matching). A shallower treemeans fewer nodes need to be traversed,
which improves query efficiency and reduces latency. It could also
reduces the total number of iterations required by the clustering
algorithm, thereby improving compute efficiency at training time.

4.7 Early Stop
In certain cases, the algorithm can immediately determine that
each distinct log should form a separate cluster without proceeding
with the full clustering process. Ending early in these situations
could reduce the computational overhead. Early stop applies in the
following scenarios:

(1) Few logs: If the number of logs is less than or equal to 2, each log
naturally forms a separate cluster.

(2) Single unresolved position: If only one position remains unre-
solved (i.e., it cannot be classified as a constant or variable),
further clustering is unnecessary since splitting based on a single
position will not increase saturation.

(3) Completely distinct unresolved positions: If unresolved positions
contain entirely different tokens in each log, these logs are in-
herently dissimilar and should belong to separate clusters.

4.8 Online Matching
In the online matching process, logs are directly matched to tem-
plate texts instead of traversing the clustering tree by recalculating
positional similarity distances. This approach significantly reduces

6

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Table 1: Loghub and Loghub-2.0 dataset statistics
Loghub Loghub-2.0

Dataset Name #Logs Size #Templates #Logs Size #Templates

HealthApp 2000 183.06 KB 75 212394 19.53 MB 156
OpenStack 2000 581.17 KB 43 207632 58.56 MB 48
OpenSSH 2000 219.94 KB 27 638947 67.27 MB 38
Proxifier 2000 231.41 KB 8 21320 2.40 MB 11
HPC 2000 147.63 KB 46 429988 31.10 MB 74
Zookeeper 2000 273.33 KB 50 74273 9.85 MB 89
Mac 2000 311.93 KB 341 100314 14.72 MB 626
Hadoop 2000 375.93 KB 114 179993 30.41 MB 236
Linux 2000 211.41 KB 118 23921 2.04 MB 338
Android 2000 272.54 KB 166 - - -
HDFS 2000 281.10 KB 14 11167740 1.46 GB 46
BGL 2000 309.72 KB 120 4631261 686.12 MB 320
Windows 2000 278.74 KB 50 - - -
Apache 2000 167.23 KB 6 51978 4.75 MB 29
Thunderbird 2000 317.57 KB 149 16601745 2.34 GB 1241
Spark 2000 191.67 KB 36 16075117 1.52 GB 236

storage requirements compared to recalculating distances at each
tree node, which would require storing detailed token-level infor-
mation (e.g., token frequencies or variability metrics) for every
node. By storing only the final template texts, our method avoids
this overhead, making it more efficient for cloud-based log parsing.

When a new log arrives, it is sequentially matched against all
templates in descending order of saturation score, stopping as soon
as a match is found. The matching process is position-based: the
token in the log must either match the token in the template ex-
actly or match a wildcard, which indicates a variable. Although
this method does not guarantee that a log will map to the exact
node it would have been assigned to during clustering, it achieves
high accuracy. This is because the templates, generated through
clustering, already capture the key structural patterns of logs, and
the saturation score prioritizes templates that are both precise and
general. It is also demonstrated by our experiment results in Sec-
tion 5.4. In summary, this approach ensures accurate and efficient
matching without recalculating distances or traversing the tree.

5 Experiment
In this section, we comprehensively evaluate the effectiveness and
efficiency of ByteBrain on widely-used public datasets.

5.1 Experiment Setup
5.1.1 Dataset. We evaluate our method on two widely-used public
datasets: LogHub [36] and LogHub-2.0 [15]. The original LogHub
dataset [36], consisting of 16 diverse datasets from various sources
such as distributed systems, operating systems, and software ap-
plications, has been widely adopted in numerous log parsing stud-
ies [8, 9, 21, 30, 33, 34]. However, its relatively small size (2,000
labeled logs per dataset) limits its validity. To address this, LogHub-
2.0 extends LogHub with larger-scale labeled logs, some exceeding
50 million messages, and has gained traction as a benchmark for
scalable log parsing [14]. The combination of these datasets allows
us to evaluate our method comprehensively, assessing both parsing
accuracy on diverse sources and efficiency on large-scale logs.

5.1.2 Baselines. We compare against a comprehensive set of base-
linemethods, covering diverse log parsing techniques. Syntax-based
baselines include clustering-based approaches, such as IPLoM [22],

LogCluster [19], and LenMa [26]; frequent patternmining approaches,
such as SLCT [29], LFA [25], LogMine [11], and SHISO [24]; heuris-
tic rule-based approaches, such as AEL [16], Drain [12] and Spell [10];
search-based approach, including Logsig [27] and MoLFI [23]. Deep
learning-based baselines include UniParser [21], Logram [9] and
LogPPT [18]. LLM-based methods are represented by LILAC [7].
These baselines are implemented with either the open-source Log-
parser toolkit [37] or their official open-source code.

5.1.3 Evaluation Metrics. We adopt the following standard metrics
to evaluate the performance of our method, consistent with prior
work in log parsing [7, 12, 21, 30, 33].
• Grouping Accuracy (GA): The ratio of correctly grouped logs to
total logs. A log is correctly grouped only when placed with all
other logs sharing its ground-truth template. This strict metric
prevents accuracy inflation from simple, frequent patterns.

• Throughput (logs/sec): Logs processed per second, calculated
as the total log count divided by the combined time for model
training and log matching.

5.2 Effectiveness Comparison
We rigorously evaluate the effectiveness of our method, ByteBrain,
by comparing it with state-of-the-art log parsing approaches across
two diverse datasets: 16 small labeled datasets from LogHub and
14 large-scale datasets from LogHub-2.0. The results, presented in
Table 2 and Table 3, demonstrate ByteBrain’s superior performance
across a wide spectrum of log types and volumes.

On the LogHub dataset, ByteBrain achieved an impressive aver-
age grouping accuracy of 0.98, surpassing most existing methods.
It consistently ranked among the top performers across individual
datasets, showcasing its versatility in handling various log patterns
effectively. ByteBrain’s performance was particularly notable on
complex datasets (e.g., Linux and Mac), underscoring its robustness
and adaptability to diverse log structures.

The advantages of ByteBrain became even more pronounced
when evaluated on the large-scale LogHub-2.0 datasets. With an
average grouping accuracy of 0.90, ByteBrain significantly outper-
formed most baselines, many of which experienced substantial
performance degradation when scaling to larger log volumes. No-
tably, ByteBrainmaintained high accuracy across different log types,
from system logs (e.g., HDFS, Spark) to application logs (e.g., Thun-
derbird, HealthApp), demonstrating its scalability and consistency
in handling massive and diverse log data. While LILAC showed
slightly higher accuracy, its poor efficiency (as detailed in Sec-
tion 5.2) limits its practical applicability in real-world scenarios,
especially for large-scale, real-time log parsing tasks.

It’s worth noting that ByteBrain’s performance remained con-
sistently high across datasets of varying sizes and complexities,
despite not being specifically optimized for any particular log type
or domain. This domain-agnostic effectiveness demonstrates Byte-
Brain’s inherent ability to handle diverse and unpredictable log
patterns, a crucial attribute for a cloud-based log parsing service
that must process logs from various applications and systems. More-
over, ByteBrain successfully completed parsing tasks on all datasets,
unlike some competing methods that failed to finish on certain
large-scale logs, further highlighting its robustness and reliability.
In some datasets, such as Mac, our method shows slightly lower

7

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

Table 2: Group Accuracy Comparison on LogHub. The highest group accuracy for each dataset is highlighted in bold, and the
second highest is underlined.

Method Android Apache BGL HDFS HPC Hadoop HealthApp Linux Mac OpenSSH OpenStack Proxifier Spark Thunderbird Windows Zookeeper Average

AEL 0.68 1.00 0.76 1.00 0.90 0.54 0.57 0.67 0.76 0.54 0.76 0.52 0.91 0.94 0.69 0.92 0.76±0.17
Drain 0.91 1.00 0.96 1.00 0.89 0.95 0.78 0.69 0.79 0.79 0.73 0.53 0.92 0.96 1.00 0.97 0.87±0.14
IPLoM 0.71 1.00 0.94 1.00 0.82 0.95 0.82 0.67 0.67 0.80 0.87 0.52 0.92 0.66 0.57 0.96 0.80±0.15
LenMa 0.88 1.00 0.69 1.00 0.83 0.89 0.17 0.70 0.70 0.93 0.74 0.51 0.88 0.94 0.57 0.84 0.77±0.21
LFA 0.62 1.00 0.85 0.82 0.55 0.89 0.90 0.28 0.60 0.50 0.20 0.03 0.99 0.65 0.59 0.84 0.64±0.29
LogCluster 0.80 0.71 0.83 0.79 0.53 0.55 0.56 0.63 0.60 0.42 0.70 0.48 0.80 0.60 0.71 0.73 0.65±0.12
LogMine 0.50 1.00 0.72 0.78 0.69 0.85 0.87 0.61 0.88 0.43 0.74 0.52 0.58 0.92 0.99 0.69 0.74±0.18
Logram 0.85 0.70 0.74 0.98 0.96 0.97 0.97 0.46 0.67 0.85 0.55 0.95 0.90 0.76 0.96 0.96 0.83±0.16
LogSig 0.54 0.73 0.23 0.38 0.09 0.51 0.63 0.11 0.52 0.44 0.84 0.49 0.54 0.76 0.68 0.78 0.52±0.23
MoLFI 0.63 1.00 0.95 0.51 0.46 1.00 0.72 0.28 0.64 0.54 0.21 0.01 0.42 0.66 0.41 0.84 0.58±0.28
SHISO 0.58 1.00 0.71 0.33 0.40 1.00 0.87 0.67 0.59 0.62 0.72 0.52 0.91 0.58 0.70 0.66 0.68±0.19
SLCT 0.88 0.73 0.57 0.84 0.33 0.55 0.42 0.30 0.56 0.52 0.87 0.52 0.69 0.88 0.70 0.73 0.63±0.19
Spell 0.92 1.00 0.79 1.00 0.65 0.78 0.64 0.61 0.76 0.55 0.76 0.53 0.91 0.84 0.99 0.96 0.79±0.16
UniParser 0.97 1.00 1.00 1.00 0.97 1.00 1.00 0.88 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 0.99±0.03
LogPPT 0.89 1.00 0.95 1.00 0.94 0.99 1.00 0.93 0.78 0.63 0.99 1.00 1.00 0.68 0.99 0.99 0.92±0.12
LILAC 0.93 1.00 0.98 1.00 0.97 0.99 1.00 0.75 0.82 0.56 1.00 1.00 1.00 0.98 0.99 0.99 0.94±0.12
ByteBrain 0.94 1.00 0.95 0.98 1.00 1.00 0.96 0.98 0.90 0.99 1.00 0.99 1.00 0.96 1.00 0.97 0.98±0.03

Table 3: Group Accuracy Comparison on LogHub-2.0. The highest group accuracy for each dataset is highlighted in bold, and
the second highest is underlined. Missing data indicates the corresponding method failing to finish.

Method Apache BGL HDFS HPC Hadoop HealthApp Linux Mac OpenSSH OpenStack Proxifier Spark Thunderbird Zookeeper Average

AEL 1.00 0.92 1.00 0.75 0.82 0.73 0.92 0.80 0.71 0.74 0.97 0.79 1.00 0.86±0.11
Drain 1.00 0.92 1.00 0.79 0.92 0.86 0.69 0.76 0.71 0.75 0.69 0.89 0.83 0.99 0.84±0.11
IPLoM 0.99 0.90 0.96 0.79 0.92 0.98 0.81 0.64 0.41 0.38 0.80 0.72 0.72 0.99 0.79±0.20
LenMa 0.99 1.00 0.79 0.80 0.81 0.70 0.75 0.85 0.50 0.86 0.81±0.14
LFA 0.81 0.73 0.75 0.73 0.83 0.80 0.23 0.59 0.16 0.67 0.35 0.60 0.38 0.84 0.61±0.23
LogCluster 0.55 0.76 0.56 0.73 0.48 0.73 0.60 0.46 0.22 0.69 0.66 0.41 0.42 0.74 0.57±0.16
LogMine 1.00 0.64 0.83 0.74 0.85 0.50 0.70 0.75±0.16
Logram 0.30 0.64 0.19 0.23 0.13 0.36 0.22 0.53 0.03 0.75 0.34±0.23
LogSig 0.11 0.37 0.00 0.00 0.00 0.14 0.00 0.47 0.38 0.49 0.00 0.18±0.21
MoLFI 0.59 1.00 0.66 0.65 0.55 0.19 0.53 0.45 0.27 0.00 0.83 0.52±0.29
SHISO 0.57 0.60 1.00 0.08 0.72 0.08 0.07 0.61 0.40 0.81 0.69 0.82 0.54±0.31
SLCT 0.42 0.41 0.64 0.23 0.11 0.08 0.42 0.28 1.00 0.02 0.75 0.40±0.30
Spell 1.00 0.68 0.96 0.45 0.65 0.62 0.76 0.62 0.78 0.52 0.99 0.73±0.19
UniParser 0.29 0.55 1.00 0.79 0.72 0.45 0.26 0.89 0.50 1.00 0.51 0.85 0.44 1.00 0.66±0.26
LogPPT 0.79 0.31 0.69 0.78 0.53 0.84 0.20 0.54 0.28 0.53 0.51 0.45 0.42 0.97 0.56±0.23
LILAC 1.00 0.89 1.00 0.87 0.87 1.00 0.97 0.90 0.69 1.00 1.00 1.00 0.81 1.00 0.93±0.10
ByteBrain 0.99 0.91 1.00 0.80 0.92 0.96 0.81 0.81 0.63 0.99 0.98 0.97 0.78 0.97 0.90±0.11

accuracy. This is primarily because our approach is syntax-based,
making it difficult to capture patterns in logs that require a holistic
semantic understanding of structured text.

Overall, these comprehensive results solidify the effectiveness
of our log parsing method.

5.3 Efficiency Comparison
We conducted the throughput experiments on a server equipped
with an Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz and
128GB RAM. Our algorithm, including both training and matching,
is implemented in Python, leveraging Just-In-Time (JIT) compila-
tion for code acceleration and multi-threading parallel processing.

As shown in Fig. 6, our method significantly outperforms all
baseline methods in terms of throughput across the majority of
datasets. On average, ByteBrain achieves a remarkable throughput
of 229 thousand logs per second, which is 1-3 orders of magnitude
higher than most existing methods and 840.68% faster than the
fastest baseline (LogCluster). This exceptional performance is par-
ticularly evident in large-scale datasets such as Thunderbird, where
our method processes 519 thousand logs per second, far surpassing
the next best performer.

Among the baseline methods, traditional approaches like AEL,
Drain, and IPLoM show relatively consistent performance across
datasets, with average throughputs ranging from 8,850 to 12,200
logs per second. However, more sophisticated methods such as
UniParser and LogPPT, while potentially offering higher accuracy,
suffer from significantly lower throughput, processing only 2,130
and 1,140 logs per second on average, respectively. Notably, some
methods like LenMa, LogMine, and Logram failed to complete pars-
ing on several datasets, indicating limitations in their efficiency or
ability to handle diverse log formats.

To ensure a fair comparison, we also evaluated our method’s
throughput when using a single core (ByteBrain Sequential) and
when Just-In-Time (JIT) compilation is disabled (ByteBrain w/o
JIT, which also disables parallelization as multi-threading is not
available without JIT). Even with a single core, our method main-
tains an impressive average throughput of 166,000 logs per second,
significantly outperforming all baseline methods. The modest per-
formance gain of ByteBrain over ByteBrain Sequential is expected
and consistent with our findings that parallelism offers limited im-
provement on smaller datasets, as demonstrated in our parallelism
scalability analysis (see Fig. 12). Furthermore, when JIT compila-
tion is disabled, although the throughput decreases to 89,100 logs

8

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Apache BGL HDFS HPC Hadoop HealthApp Linux Mac OpenSSH OpenStack Proxifier Spark ThunderbirdZookeeper Average

AEL

Drain

IPLoM

LenMa

LFA

LogCluster

LogMine

Logram

LogSig

MoLFI

SHISO

SLCT

Spell

UniParser

LogPPT

LILAC

ByteBrain Sequential

ByteBrain w/o JIT

ByteBrain

1.91e+04 5.00e+02 7.96e+03 2.84e+04 2.16e+03 6.08e+02 6.09e+03 1.17e+04 1.86e+03 8.08e+03 1.53e+04 0.00e+00 1.41e+03 2.65e+04 9.27e+03

1.02e+04 9.29e+03 9.94e+03 1.14e+04 9.31e+03 1.20e+04 9.24e+03 5.88e+03 8.63e+03 3.23e+03 7.38e+03 1.01e+04 6.66e+03 1.06e+04 8.85e+03

1.43e+04 1.27e+04 1.17e+04 1.45e+04 1.28e+04 1.58e+04 1.25e+04 1.11e+04 1.16e+04 9.84e+03 1.08e+04 1.07e+04 9.15e+03 1.37e+04 1.22e+04

1.72e+03 0.00e+00 2.44e+03 6.23e+01 1.52e+02 0.00e+00 2.18e+03 5.98e+02 2.52e+03 4.05e+02 5.30e+02 0.00e+00 0.00e+00 2.33e+03 9.24e+02

1.61e+04 1.43e+04 1.28e+04 1.65e+04 1.44e+04 1.99e+04 1.38e+04 1.25e+04 1.32e+04 1.10e+04 1.13e+04 1.17e+04 1.01e+04 1.51e+04 1.38e+04

1.95e+04 2.53e+04 1.99e+04 4.57e+04 1.83e+04 3.30e+04 1.68e+04 2.03e+04 2.88e+04 1.70e+04 1.75e+04 1.76e+04 1.53e+04 3.52e+04 2.36e+04

4.95e+01 2.37e+03 0.00e+00 0.00e+00 1.02e+01 0.00e+00 6.92e+01 1.83e+01 0.00e+00 0.00e+00 3.14e+01 0.00e+00 0.00e+00 2.86e+01 1.84e+02

3.02e+03 0.00e+00 0.00e+00 1.79e+02 3.39e+02 2.40e+02 2.19e+03 1.25e+03 1.21e+02 9.61e+02 3.48e+03 0.00e+00 0.00e+00 3.17e+03 1.07e+03

2.86e+03 0.00e+00 1.45e+03 6.30e+01 6.36e+02 3.22e+02 8.66e+02 1.71e+01 2.91e+02 4.48e+02 1.78e+03 0.00e+00 0.00e+00 5.24e+02 6.61e+02

3.67e+03 0.00e+00 2.60e+03 5.60e+02 2.33e+01 1.59e+01 3.07e+02 2.72e+01 2.10e+03 1.33e+01 1.51e+03 0.00e+00 0.00e+00 3.73e+03 1.04e+03

5.17e+02 7.00e+02 1.46e+03 1.34e+03 6.35e+02 2.72e+03 4.30e+02 3.75e+02 7.72e+02 1.34e+03 2.49e+03 0.00e+00 0.00e+00 6.33e+02 9.57e+02

1.14e+04 0.00e+00 1.10e+04 1.04e+02 9.48e+03 1.36e+04 9.49e+03 8.21e+01 1.09e+04 8.92e+03 6.06e+03 0.00e+00 0.00e+00 1.06e+04 6.54e+03

8.93e+03 2.24e+03 7.58e+03 0.00e+00 2.44e+03 1.33e+03 6.91e+03 6.71e+01 7.61e+03 6.49e+01 3.15e+03 0.00e+00 0.00e+00 9.32e+03 3.55e+03

2.47e+03 2.75e+03 2.32e+03 3.94e+03 2.16e+03 2.97e+03 2.37e+03 1.50e+03 1.95e+03 1.50e+03 1.45e+03 1.83e+03 1.08e+03 1.47e+03 2.13e+03

1.48e+03 1.89e+03 9.20e+02 1.96e+03 9.40e+02 1.25e+03 1.29e+03 5.18e+02 9.52e+02 5.59e+02 9.33e+02 1.15e+03 6.15e+02 1.50e+03 1.14e+03

1.82e+03 4.37e+03 1.33e+04 4.60e+03 8.43e+02 2.05e+03 8.98e+01 9.64e+01 8.17e+03 3.42e+03 1.68e+03 1.35e+04 5.70e+03 9.79e+02 4.33e+03

2.74e+05 2.10e+05 1.41e+05 3.82e+05 9.91e+04 9.81e+04 8.87e+04 9.79e+04 2.22e+05 8.46e+04 1.02e+05 1.18e+05 2.20e+05 1.79e+05 1.66e+05

2.02e+05 5.49e+04 1.36e+05 2.24e+05 7.32e+03 7.43e+03 1.93e+04 9.47e+03 1.60e+05 7.36e+04 1.40e+05 1.68e+04 6.35e+04 1.33e+05 8.91e+04

2.42e+05 4.15e+05 3.69e+05 3.87e+05 9.17e+04 9.85e+04 8.73e+04 8.87e+04 2.38e+05 8.82e+04 1.40e+05 2.30e+05 5.62e+05 1.71e+05 2.29e+05

10
2

10
3

10
4

10
5

Figure 6: Throughput (#logs/second) comparison on LogHub-2.0. Missing data indicates failing to finish.

10
5

10
6

10
7

Number of Logs

10
0

10
1

R
un

ni
ng

 T
im

e
(s

)

Apache

BGL

HDFS

HPC
Hadoop
HealthApp

Linux

Mac

OpenSSH
OpenStack

Proxifier

SparkThunderbird

Zookeeper

Figure 7: Our running time scales linearly with log size

per second, it still surpasses baseline methods by at least an order
of magnitude. These results demonstrate that the superior perfor-
mance of our method stems from its algorithmic efficiency rather
than merely from optimized implementation.

Fig. 7 provides further insight into ByteBrain’s efficiency by
plotting the running time against the number of logs for different
datasets. The graph shows a near-linear relationship between pro-
cessing time and log volume, with most datasets clustered along a
similar trajectory. This linear scaling demonstrates our method is
able to efficiently handle increasing log volumes, which is a crucial
feature for cloud-based log parsing services.

In summary, these efficiency comparisons highlight the superior
performance of our method in processing large-scale log data. The
high throughput and linear complexity make it particularly well-
suited for cloud-based log parsing services, where handling massive
volumes of diverse log data efficiently is crucial.

5.4 Ablation Study
We compare ByteBrain with the following variants with respect
to either accuracy or efficiency to validate the effectiveness of our
proposed techniques:

LogHub LogHub-2.0
0.5

0.6

0.7

0.8

0.9

1.0
G

ro
up

 A
cc

ur
ac

y

ByteBrain
w/ naive match
w/o variable in saturation
w/o position importance
w/o confidence factor
random centroid selection

Figure 8: Our online match method maintains performance,
while other techniques improve accuracy.

• w/ naive match: Use the templates assigned during clustering for
training logs instead of the matching method in Section 4.8.

• w/o position importance: For positional similarity distance, set
𝑤𝑖 = 1 in Eq. 2.

• w/o variable in saturation: For saturation, set 𝑠 (𝐶) = 𝑓𝑐 in Eq. 3.
• w/o confidence factor : For saturation, set 𝑠 (𝐶) = 𝑓𝑣 · 𝑓𝑐 in Eq. 3.
• random centroid selection: Randomly select initial centroids for
new clusters instead of the K-Means++ strategy.

• w/o ensure saturation increase: Split each node into two clusters,
even if their saturation scores do not increase.

• w/o balanced group and w/o early stopping
• w/o deduplication & related techs: Skip deduplication and depen-
dent optimizations like balanced group and early stopping.

5.4.1 Text-basedmatching does not compromise accuracy. As shown
in Fig. 8, directly using the templates assigned to training logs dur-
ing clustering produces almost identical group accuracy compared
to assigning templates by matching each log with the template
texts after the clustering tree is built. Therefore, the online match-
ing method proposed in Section 4.8 significantly reduces storage
overhead with virtually no impact on matching performance.

9

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

BGL HDFS Spark Thunderbird
10

3

10
4

10
5

ByteBrain
w/o early stopping
w/o ensure saturation increase
w/o position importance
ordinal encoding
w/o balanced group
w/o variable in saturation
w/o deduplication&related techs
LILAC
UniParser

Figure 9: Our method boosts throughput and remains much
faster than baselines without individual techniques.

5.4.2 Accuracy improvement brought by the proposed techniques.
As shown in Fig. 8, removing variable positions from saturation
calculation reduces accuracy, confirming its contribution. Inter-
estingly, on LogHub-2.0, w/o variable saturation achieves higher
minimum accuracy, suggesting our heuristic position estimation
may occasionally misclassify positions on challenging datasets.
Nevertheless, variable saturation consistently improves overall per-
formance across all datasets.

Removing position importance from distance calculations de-
creases accuracy, confirming its value in capturing structural signif-
icance of log positions. This effect is more pronounced on the larger,
more complex LogHub-2.0 datasets, underscoring these techniques’
importance when handling diverse, voluminous log data.

Random centroid selection causes the most severe accuracy re-
duction, highlighting intelligent selection’s critical role in achiev-
ing high parsing accuracy, especially for large-scale, diverse log
datasets. The confidence factor removal from saturation calculation
shows relatively minor impact across datasets, indicating its less
significant contribution compared to other techniques.

This ablation study confirms each technique contributes to Byte-
Brain’s accuracy, with their importance amplified by increasing
log data scale and complexity. Together, these techniques enable
ByteBrain to maintain robust performance across diverse log types
and volumes.

5.4.3 Efficiency improvement brought by the proposed techniques.
As shown in Fig. 9, our proposed techniques deliver significant
efficiency improvements across the four large-scale datasets (over
500MB).

The most striking impact comes from deduplication and its
related techniques. Without these optimizations, the throughput
drops dramatically, particularly evident in the Thunderbird dataset
where performance decreases by about two orders of magnitude.
This underscores the critical role of deduplication, balanced group-
ing, and early stopping in handling large-scale log data efficiently.
Nevertheless, when compared to the best performing baselines like
LILAC and UniParser, the throughput of each variant is consistently
higher by one or two orders of magnitude across all datasets.

Variable saturation scoring is the second most important im-
provement, enabling faster convergence by reducing unnecessary
splits on variable positions during training. Balanced grouping
ranks third, preventing unbalanced clusters where a single node
dominates, ensuring efficient processing across the clustering tree.

10
7

10
8

10
9

Logs Size (bytes)

10
4

10
5

10
6

10
7

10
8

D
ic

tio
na

ry
 S

iz
e

(b
yt

es
)

HealthApp

OpenStack
OpenSSH

Proxifier

HPC
Zookeeper

Mac
Hadoop

Linux

HDFSBGL

Apache

Thunderbird

Spark

Figure 10: Dictionary size with ordinal encoding, demonstrat-
ing storage savings by hash encoding

Hash encoding also provides a notable speedup by enabling par-
allel token processing, unlike ordinal encoding, which requires
sequential mapping. Other proposed techniques, such as position
importance and ensuring saturation increase, also demonstrate
noticeable improvements in throughput across different datasets,
though to a lesser extent.

Importantly, while some techniques yield limited improvements
on specific datasets, they consistently contribute positively across
scenarios without any performance degradation. By combining all
these techniques, our method achieves remarkable performance
across all datasets.

5.4.4 Hash encoding reduces space consumption. We study the sizes
of the dictionary files (mapping of tokens to encodings) generated
by ordinal encoding on LogHub-2.0 datasets, which represent the
space savings we achieve by using hash encoding. As shown in
Fig. 10, as log size increases, the dictionary size required for ordi-
nal encoding grows significantly, reaching hundreds of megabytes
for large datasets like Thunderbird and Spark. Our hash encoding
method eliminates the need for storing these large dictionaries
entirely. This approach not only reduces storage requirements but
also improves parsing efficiency by minimizing data transfer over-
head. Consequently, it helps users minimize their operational costs
in cloud environments, where storage incurs ongoing expenses.
Moreover, the space savings become increasingly significant as the
scale of log data grows, making our method particularly suitable
for large-scale, cloud-based log parsing services.

5.5 Parameter Sensitivity
5.5.1 Saturation. As shown in Fig. 11, the group accuracy of our
method remains relatively stable across a wide range of saturation
thresholds, indicating that our method is not overly sensitive to
this parameter. This robustness ensures consistent parsing results
even when the threshold is not precisely tuned.

While ourmethodmaintains relatively stable performance across
different saturation thresholds, the threshold still effectively con-
trols template precision when varied across a wider range. This
controllable behavior is desirable, as it allows users to adjust parsing
precision according to their needs while maintaining robustness
against small parameter perturbations.

To illustrate how the saturation threshold affects template gen-
eration, Table 4 shows templates produced at different threshold

10

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

0.5

1.0

G
ro

up
 A

cc
ur

ac
y

Apache BGL HDFS HPC Hadoop HealthApp

0.2 0.4 0.6 0.8
Threshold

0.5

1.0

G
ro

up
 A

cc
ur

ac
y

Mac

0.2 0.4 0.6 0.8
Threshold

OpenSSH

0.2 0.4 0.6 0.8
Threshold

OpenStack

0.2 0.4 0.6 0.8
Threshold

Spark

0.2 0.4 0.6 0.8
Threshold

Thunderbird

0.2 0.4 0.6 0.8
Threshold

Zookeeper

LogHub LogHub-2.0

Figure 11: Group accuracy with different saturation threshold on LogHub and LogHub-2.0 (selected datasets due to space limit)

Table 4: Templates obtained by varying saturation thresholds
showing adaptability
Saturation Template

0.05 * lock * * * tag * name * ws * uid * pid *

0.78 release lock * flg * tag * name * ws * uid * pid *
acquire lock * flags * tag * name * ws * uid * pid *

0.9

release lock * flg * tag * name android ws * uid * pid *
release lock * flg * tag * name * ws null uid * pid *
acquire lock * flags * tag * name android ws * uid * pid *
acquire lock * flags * tag * name * ws null uid * pid *

0.95

release lock * flg * tag * name android ws * uid * pid *
release lock * flg * tag * name * ws null uid * pid *
release lock * flg * tag * name audioserver ws null uid * pid *
release lock * flg * tag * name android ws null uid * pid *
acquire lock * flags * tag * name android ws null uid * pid *
acquire lock * flags * tag * name android ws * uid * pid *
acquire lock * flags * tag * name audioserver ws null uid * pid *
acquire lock * flags * tag * name * ws null uid * pid *

values for Android logs in LogHub. At a low threshold (0.05), the
template is highly generalized with most fields marked as variables
(*). As the threshold increases to 0.78, more structural elements like
"release" and "acquire" are preserved. At higher thresholds (0.9 and
0.95), the templates become increasingly specific, distinguishing
between similar terms like "flg" and "flags" and preserving system-
specific values like "android" and "audioserver". This progression
demonstrates how users can effectively control template granular-
ity to support different analysis scenarios, from high-level pattern
recognition to detailed debugging.

5.5.2 Parallelism. We investigated the impact of parallelism on
throughput. In Fig. 12, as the degree of parallelism increases, we see
a general trend of improved throughput across large-scale datasets,
while smaller datasets like Linux and Proxifier show relatively
modest gains with increased parallelism. This suggests that Byte-
Brain’s parallel processing capabilities are particularly beneficial
for handling large-scale log data. Interestingly, we observe that the
throughput improvement tends to plateau as parallelism increases
beyond a certain point, especially for smaller datasets. This indi-
cates that there’s an optimal level of parallelism for each dataset
size, beyond which additional parallel processing may not yield
significant performance gains.

6 Industrial Evaluation
ByteBrain has been successfully deployed as part of Volcano En-
gine’s Torch Log Service (TLS) and is now available to invited

Table 5: Performance evaluation using actual production data
from the TLS on Volcano Engine, demonstrating ByteBrain’s
effectiveness in actual cloud environments.

Topic Scenario Log Volume Model Size Training Time
Text stream processing 189 MB/s 3 MB 0.91s
Webserver access log 57.8 MBs 10 MB 7.98s
Webserver access log 47.7 MB/s 3 MB 1.02s
Go HTTP API server 3.51 MB/s 7 MB 1.65s
Go search server 2.46 MB/s 7 MB 4.64s

users. In production, we use a Go-based service to schedule train-
ing tasks, which are executed on separated Pods and utilize the
same Python implementation as described in Section 5. For online
matching, which must integrate with conventional text indexing
systems, we reimplemented the matching module in C++ and Rust
and embedded it directly into the log indexing pipeline. This strate-
gic integration eliminates cross-server data transfer (between C++
indexing code and our log parsing module), substantially reducing
I/O overhead and log parsing latency.

The system enables users to organize queried logs by their cor-
responding templates, providing a structured and intuitive view of
complex log data. A distinctive feature is the real-time precision
adjustment capability through an interactive slider in the web in-
terface, allowing users to dynamically control template granularity
based on specific analytical requirements. This interactive capabil-
ity helps users identify patterns and anomalies more effectively by
allowing them to switch between different levels of abstraction on
demand. Based on the parsed log templates, users can save selected
templates to a template library, which can then be used to configure
alerts (e.g., sudden changes in template count or the appearance of
new templates). Users can also compare the templates generated
across different time periods to analyze changes in log patterns.

Table 5 presents performance metrics collected from diverse
log topics in production environments, representing characteristic
real-world deployment scenarios. As illustrated, the system pro-
cesses exceptionally high log volumes, reaching up to 189 MB/s,
which is equivalent to millions of logs per second. Despite this
substantial throughput, our algorithm completes model training
sessions within seconds, demonstrating remarkable computational
efficiency. The systemmaintains an end-to-end visible latency of ap-
proximately 5-15 seconds per log (encompassing ingestion through
completed indexing, enabling user queries), confirming that our
log parsing method effectively keeps pace with real-time log gen-
eration rates. It is worth noting that this latency figure includes
both log parsing and traditional text indexing operations. This level

11

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Zeyan Li et al.

2e5

4e5

Th
ro

ug
hp

ut

Apache Zookeeper Mac HealthApp Hadoop HPC

5 10 15
Parallelism

2e5

4e5

6e5

Th
ro

ug
hp

ut

OpenStack

5 10 15
Parallelism

OpenSSH

5 10 15
Parallelism

BGL

5 10 15
Parallelism

HDFS

5 10 15
Parallelism

Spark

5 10 15
Parallelism

Thunderbird

Figure 12: Throughput vs/ parallelism on LogHub-2.0 (selected datasets due to space limit). The datasets are sorted by size.

of responsiveness satisfies the requirements for most real-time
application scenarios.

The results in Table 5 also highlight the storage efficiency of
our method. The size of log parsing model for each topic is only
a few megabytes, which is significantly smaller than the size of
the corresponding raw log text. This minimal model size ensures
that our approach introduces negligible storage overhead, making
it highly cost-efficient for large-scale cloud applications.

Due to privacy constraints preventing direct access to user logs,
we cannot determine optimal thresholds for calculating desired
template counts and parsing accuracy for each topic. Nevertheless,
we observe that the number of most precise templates (saturation
≥ 0.9) typically ranges between 1,000 and 10,000 across different
deployment scenarios.

The successful integration of ByteBrain within Volcano Engine
demonstrates its practical value in production environments, where
it effectively combines high-throughput processing capabilities
with flexible, user-centric template management. This operational
validation complements our experimental findings and confirms
ByteBrain’s suitability for enterprise-scale log parsing applications.

7 Discussion
In this section, we discuss several limitations of our approach and
potential improvements that can be made in the future.

First, while our approach achieves excellent accuracy and ef-
ficiency, it inherently lacks semantic understanding of log con-
tent. Unlike human operators who naturally group logs based on
their meanings, our syntax-based approach can only rely on struc-
tural similarities. Semantic parsers leveraging natural language
processing techniques can interpret logs like humans do, intelli-
gently grouping similar logs and separating different ones, though
at higher computational costs. Our choice of a syntax-based ap-
proach prioritizes compute-efficiency and cost-efficiency, enabling
efficient processing of massive log volumes while maintaining high
accuracy. Looking forward, we may combine semantic-based under-
standing with syntax-based methods to achieve both efficiency and
semantic understanding in future work, creating a hybrid solution
that balances the strengths of both approaches.

The second limitation of our approach, similar to other syntax-
based methods [12, 30], is the inability to directly parse logs of
varying lengths into the same template. This limitation stems from
syntax-based methods relying solely on comparing tokens at iden-
tical positions to determine log similarity, without understanding
the semantic meaning. This becomes particularly challenging when

logs contain variable-length elements, such as when a print state-
ment outputs a dynamic list, resulting in semantically similar logs
being parsed into different templates despite originating from the
same log statement. In this paper, we deliberately choose not to im-
plement dynamic matching solutions (e.g., using longest common
subsequence to compare logs of different lengths) to address this
challenge. The reason is that allowing wildcards to match variable
numbers of tokens would require a search process during online
matching to determine the optimal token spans for each wildcard.
Such an approach would significantly increase the computational
complexity of online matching, making it impractical in cloud en-
vironments where millions of logs need to be matched per second.
Instead, we propose a simple yet effective optimization at the query
result processing layer. For example, consider three templates gen-
erated from the statement print(f’users={users}’) where the
users list contains one, two, and three elements: users *, users
* *, and users * * *. When processing query results before
presentation, we merge consecutive wildcards in each template,
resulting in users * for all three cases. We then group logs with
the same merged template together in the response. This optimiza-
tion balances user experience and system performance: users see
one intuitive template users * that accommodates variable-length
lists, while our underlying system maintains efficiency by using the
original fixed-length templates during log parsing and matching.

8 Conclusion
This paper presents an adaptive and efficient log parsing approach,
which is optimized as a cloud service, for processing diverse, mas-
sive logs from different tenants. Our method offers real-time ad-
justable parsing precision, incorporates efficiency-enhancing tech-
niques (deduplication, balanced grouping, early termination), and
minimizes storage overhead through hash encoding and text-based
matching. Comprehensive evaluations on public datasets demon-
strate state-of-the-art efficiency with comparable accuracy, while
production deployment validates its practical effectiveness and ef-
ficiency. By integrating out-of-the-box log parsing and intelligent
analysis capabilities into our log service, we enhances its overall
intelligence and usability. Future work will extend the framework
to handle more complex log patterns, including structural content
and dynamic-length variables, enabling broader applications.

12

Adaptive and Efficient Log Parsing as a Cloud Service SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

References
[1] [n. d.]. Amazon CloudWatch. https://aws.amazon.com/cn/cloudwatch/ Accessed:

April 1, 2025.
[2] [n. d.]. Cloud Monitoring as a Service | Datadog. https://www.datadoghq.com/

Accessed: April 1, 2025.
[3] GitHub [n. d.]. Elastic/Logstash: Logstash - Transport and Process Your Logs, Events,

or Other Data. GitHub. https://github.com/elastic/logstash Accessed: April 1,
2025.

[4] Splunk [n. d.]. Splunk | The Key to Enterprise Resilience. Splunk. https://www.
splunk.com Accessed: April 1, 2025.

[5] David Arthur and Sergei Vassilvitskii. [n. d.]. K-Means++: The Advantages of
Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (USA, 2007-01-07) (SODA ’07). Society for Industrial and
Applied Mathematics, 1027–1035.

[6] An Ran Chen, Tse-Hsun Chen, and Shaowei Wang. 2022. Pathidea: Improving
Information Retrieval-Based Bug Localization by Re-Constructing Execution
Paths Using Logs. IEEE Transactions on Software Engineering 48, 8 (Aug. 2022),
2905–2919. https://doi.org/10.1109/tse.2021.3071473

[7] Xiaolei Chen, Peng Wang, Jia Chen, and Wei Wang. 2023. AS-Parser: Log Parsing
Based on Adaptive Segmentation. Proceedings of the ACM on Management of
Data 1, 4 (Dec. 2023), 1–26. https://doi.org/10.1145/3626719

[8] Guojun Chu, Jingyu Wang, Qi Qi, Haifeng Sun, Shimin Tao, and Jianxin Liao.
2021. Prefix-Graph: A Versatile Log Parsing Approach Merging Prefix Tree
with Probabilistic Graph. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE) (ICDE 2021). IEEE, Chania, Greece, 2411–2422. https://doi.
org/10.1109/icde51399.2021.00274

[9] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient Log Parsing Using n-Gram Dictionaries. IEEE Transactions
on Software Engineering 48, 3 (Jan. 2020), 1–1. https://doi.org/10.1109/tse.2020.
3007554 arXiv:2001.03038 [cs]

[10] Min Du and Feifei Li. 2016. Spell: Streaming Parsing of System Event Logs.
In 2016 IEEE 16th International Conference on Data Mining (ICDM). 859–864.
https://doi.org/10.1109/ICDM.2016.0103

[11] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. LogMine: Fast Pattern Recognition for Log Analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM ’16). Association for Computing Machinery, New
York, NY, USA, 1573–1582. https://doi.org/10.1145/2983323.2983358

[12] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An
Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services (ICWS) (ICWS Computer Society 2017). IEEE, Honolulu,
HI, USA, 33–40. https://doi.org/10.1109/icws.2017.13

[13] Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R. Lyu. 2023. SemParser: A
Semantic Parser for LogAnalytics. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE) (ICSE 2023). IEEE, Melbourne, Australia, 881–893.
https://doi.org/10.1109/icse48619.2023.00082

[14] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R. Lyu. 2024. LILAC: Log Parsing
Using LLMs with Adaptive Parsing Cache. Proceedings of the ACM on Soft-
ware Engineering 1, FSE (July 2024), 137–160. https://doi.org/10.1145/3643733
arXiv:2310.01796 [cs]

[15] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen
Gu, Zhuangbin Chen, Jieming Zhu, and Michael R. Lyu. 2023. A Large-scale
Benchmark for Log Parsing. https://doi.org/10.48550/ARXIV.2308.10828
arXiv:2308.10828 [cs]

[16] Zhen Ming Jiang, Ahmed E. Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting Execution Logs to Execution Events for Enterprise Applications
(Short Paper). In 2008 The Eighth International Conference on Quality Software
(QSIC 2008). IEEE, Oxford, United Kingdom, 181–186. https://doi.org/10.1109/
qsic.2008.50

[17] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for Assessing the Accuracy of Log Message Template Identification
Techniques. In Proceedings of the 44th International Conference on Software Engi-
neering (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
1095–1106. https://doi.org/10.1145/3510003.3510101

[18] Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-based
Few-shot Learning. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE) (ICSE 2023). IEEE, Melbourne, Australia, 2438–2449.
https://doi.org/10.1109/icse48619.2023.00204 arXiv:2302.07435 [cs]

[19] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log Clustering Based Problem Identification for Online Service Systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion
(ICSE ’16). ACM, Austin Texas, 102–111. https://doi.org/10.1145/2889160.2889232

[20] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. (Sept. 2019).

[21] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong
Xu, Minghua Ma, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, and Dong-
mei Zhang. 2022. UniParser: A Unified Log Parser for Heterogeneous Log
Data. In Proceedings of the ACM Web Conference 2022 (WWW ’22). ACM, Vir-
tual Event, Lyon France, 1893–1901. https://doi.org/10.1145/3485447.3511993
arXiv:2202.06569 [cs]

[22] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios.
2009. Clustering Event Logs Using Iterative Partitioning. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD09). ACM, Paris France, 1255–1264. https://doi.org/10.1145/1557019.1557154

[23] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A Search-Based Approach for Accurate Identifica-
tion of Log Message Formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). 167–16710.

[24] Masayoshi Mizutani. 2013. Incremental Mining of System Log Format. In 2013
IEEE International Conference on Services Computing. 595–602. https://doi.org/10.
1109/SCC.2013.73

[25] Meiyappan Nagappan and Mladen A. Vouk. 2010. Abstracting Log Lines to
Log Event Types for Mining Software System Logs. In 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). 114–117. https://doi.org/
10.1109/MSR.2010.5463281

[26] Keiichi Shima. 2016. Length Matters: Clustering System Log Messages Using
Length of Words. arXiv:1611.03213 [cs]

[27] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating System
Events from Raw Textual Logs. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM ’11). Association
for Computing Machinery, New York, NY, USA, 785–794. https://doi.org/10.
1145/2063576.2063690

[28] Shimin Tao, Weibin Meng, Yimeng Cheng, Yichen Zhu, Ying Liu, Chunning Du,
Tao Han, Yongpeng Zhao, Xiangguang Wang, and Hao Yang. 2022. LogStamp:
Automatic Online Log Parsing Based on Sequence Labelling. ACM SIGMETRICS
Performance Evaluation Review 49, 4 (June 2022), 93–98. https://doi.org/10.1145/
3543146.3543168

[29] R. Vaarandi. 2003. A Data Clustering Algorithm for Mining Patterns from Event
Logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003) (IEEE Cat. No.03EX764). 119–126. https://doi.org/10.1109/IPOM.2003.
1251233

[30] Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong Liu, Lin-
gling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, Saravanakumar Rajmohan,
and Dongmei Zhang. 2022. SPINE: A Scalable Log Parser with Feedback Guidance.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22). ACM,
Singapore, Singapore, 1198–1208. https://doi.org/10.1145/3540250.3549176

[31] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. 2024.
DivLog: Log Parsing with Prompt Enhanced In-Context Learning. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24).
ACM, Lisbon Portugal, 199:1–199:12. https://doi.org/10.1145/3597503.3639155

[32] Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E. Hassan. 2022. Im-
proving State-of-the-Art Compression Techniques for Log Management Tools.
IEEE Transactions on Software Engineering 48, 8 (Aug. 2022), 2748–2760. https:
//doi.org/10.1109/TSE.2021.3069958

[33] Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu. 2023. Brain: Log Parsing With
Bidirectional Parallel Tree. IEEE Transactions on Services Computing 16, 5 (Sept.
2023), 3224–3237. https://doi.org/10.1109/tsc.2023.3270566

[34] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,
and Fabio Pianese. 2023. System Log Parsing: A Survey. IEEE Transactions on
Knowledge and Data Engineering 35, 8 (2023), 1–20. https://doi.org/10.1109/tkde.
2022.3222417 arXiv:2212.14277 [cs]

[35] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong
Wu, Zhen Feng, Xidao Wen, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. An
Empirical Investigation of Practical Log Anomaly Detection for Online Service
Systems. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’21). ACM, Athens Greece, 1404–1415. https://doi.org/10.1145/3468264.
3473933

[36] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu. 2023. Loghub:
A Large Collection of System Log Datasets for AI-driven Log Analytics. In 2023
IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)
(ISSRE 2023). IEEE, Florence, Italy, 355–366. https://doi.org/10.1109/issre59848.
2023.00071 arXiv:2008.06448 [cs]

[37] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and Benchmarks for Automated Log Parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP) (ICSE 2019). IEEE, Montreal, QC, Canada, 121–130. https:
//doi.org/10.1109/icse-seip.2019.00021

13

https://aws.amazon.com/cn/cloudwatch/
https://www.datadoghq.com/
https://github.com/elastic/logstash
https://www.splunk.com
https://www.splunk.com
https://doi.org/10.1109/tse.2021.3071473
https://doi.org/10.1145/3626719
https://doi.org/10.1109/icde51399.2021.00274
https://doi.org/10.1109/icde51399.2021.00274
https://doi.org/10.1109/tse.2020.3007554
https://doi.org/10.1109/tse.2020.3007554
https://arxiv.org/abs/2001.03038
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1109/icws.2017.13
https://doi.org/10.1109/icse48619.2023.00082
https://doi.org/10.1145/3643733
https://arxiv.org/abs/2310.01796
https://doi.org/10.48550/ARXIV.2308.10828
https://arxiv.org/abs/2308.10828
https://doi.org/10.1109/qsic.2008.50
https://doi.org/10.1109/qsic.2008.50
https://doi.org/10.1145/3510003.3510101
https://doi.org/10.1109/icse48619.2023.00204
https://arxiv.org/abs/2302.07435
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1145/3485447.3511993
https://arxiv.org/abs/2202.06569
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1109/MSR.2010.5463281
https://doi.org/10.1109/MSR.2010.5463281
https://arxiv.org/abs/1611.03213
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1145/3543146.3543168
https://doi.org/10.1145/3543146.3543168
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1145/3540250.3549176
https://doi.org/10.1145/3597503.3639155
https://doi.org/10.1109/TSE.2021.3069958
https://doi.org/10.1109/TSE.2021.3069958
https://doi.org/10.1109/tsc.2023.3270566
https://doi.org/10.1109/tkde.2022.3222417
https://doi.org/10.1109/tkde.2022.3222417
https://arxiv.org/abs/2212.14277
https://doi.org/10.1145/3468264.3473933
https://doi.org/10.1145/3468264.3473933
https://doi.org/10.1109/issre59848.2023.00071
https://doi.org/10.1109/issre59848.2023.00071
https://arxiv.org/abs/2008.06448
https://doi.org/10.1109/icse-seip.2019.00021
https://doi.org/10.1109/icse-seip.2019.00021

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	4 Algorithm
	4.1 Preprocessing
	4.2 Initial grouping
	4.3 Hierarchical Clustering
	4.4 Single Clustering Process
	4.5 Calculation of Saturation
	4.6 Balanced grouping
	4.7 Early Stop
	4.8 Online Matching

	5 Experiment
	5.1 Experiment Setup
	5.2 Effectiveness Comparison
	5.3 Efficiency Comparison
	5.4 Ablation Study
	5.5 Parameter Sensitivity

	6 Industrial Evaluation
	7 Discussion
	8 Conclusion
	References

